L2 approximation with trigonometric n-nomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation By Trigonometric Polynomials

These notes are prepared as lecture notes exclusively for the participants of this conference only. Any reproduction in any media, or any use for any other purpose of any part of this manuscript, without an expressed written consent of the author is unlawful.thorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conc...

متن کامل

Nonperiodic Trigonometric Polynomial Approximation

The most common approach for approximating non-periodic function defined on a finite interval is based on considering polynomials as basis functions. In this paper we will address the non-optimallity of polynomial approximation and suggest to switch from powers of x to powers of sin(px) where p is a parameter which depends on the dimension of the approximating subspace. The new set does not suf...

متن کامل

Monotone trigonometric approximation

Let f ∈ C[−ω, ω], 0 < ω < π, be nonlinear and nondecreasing. We wish to estimate the degree of approximation of f by trigonometric polynomials that are nondecreasing in [−ω, ω]. We obtain estimates involving the second modulus of smoothness of f and show that one in general cannot have estimates with the third modulus of smoothness.

متن کامل

Optimizing n-variate (n+k)-nomials for small k

We give a high precision polynomial-time approximation scheme for the supremum of any honest n-variate (n+2)-nomial with a constant term, allowing real exponents as well as real coefficients. Our complexity bounds count field operations and inequality checks, and are polynomial in n and the logarithm of a certain condition number. For the special case of polynomials (i.e., integer exponents), t...

متن کامل

On the L2 Inequalities Involving Trigonometric Polynomials and Their Derivatives

In this note we study the upper bound of the integral f {tW(x))2w(x)dx Jo where t(x) is a trigonometric polynomial with real coefficients such that \\t\\ao < 1 and w(x) is a nonnegative function defined on [0, n]. When w{x) = sin; x , where j is a positive integer, we obtain the exact upper bound for the above integral.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1973

ISSN: 0021-9045

DOI: 10.1016/0021-9045(73)90083-x